Order Processing Time
All orders placed on our website are processed within 2-4 business days, from Monday to Friday, 8:00 AM – 6:00 PM Pacific Time (PT). Orders received after our daily cut-off time of 10:00 PM PT will be processed on the next business day. Please note that we do not process orders on weekends or public holidays.
Shipping Methods and Carriers
Zetlly partners exclusively with reputable shipping carriers to ensure timely delivery of your orders. We utilize:
-
FedEx
-
UPS
-
USPS
The choice of carrier is determined by factors such as destination, weight, and delivery timeframe to provide optimal service.
Shipping Rates and Fees
-
Free shipping is provided for all orders over $199.
-
Orders under $199 will incur a flat-rate shipping fee of $7.99.
-
All orders shipped within the United States will be subject to a sales tax charge of 5%.
Estimated Delivery Time
Once shipped, orders typically arrive within 6 to 10 business days. Our delivery times are from Monday to Friday, 8:00 AM – 6:00 PM Pacific Time (PT). Please allow additional time for deliveries to remote or rural locations.
Shipping Restrictions
Zetlly currently ships exclusively within the United States. At present, we do not offer international shipping or deliveries to P.O. boxes or APO/FPO addresses. Orders placed with addresses outside our designated delivery areas will be canceled, and refunds will be processed accordingly.
Tracking Your Order
Upon shipment, customers will receive a confirmation email containing tracking information. You can track your order directly through the provided tracking link or by visiting the carrier’s official website:
Please allow up to 48 hours for tracking information to update in the carrier’s system.
Eligibility for Returns and Exchanges
We accept returns and exchanges within 30 days from the date your order is delivered. Items must be unused, in the original condition, and accompanied by the original packaging and receipt or proof of purchase.
How to Return or Exchange an Item
To initiate a return or exchange, please follow these steps:
-
Contact our customer support at [email protected] with your order number and reason for return or exchange.
-
Our team will respond within 24 hours to provide detailed instructions, including the specific Return Address for your shipment.
-
Package your item securely and include all original packaging and proof of purchase.
Return shipments should be sent to: Blanq LLC 1201 South Hope Street Apt 2413, Los Angeles, CA 90015, USA
Return Conditions
-
Items must be returned in their original condition, unworn, undamaged, and complete with all original packaging and documentation.
-
Items returned without prior authorization or not meeting the above conditions may not qualify for a refund or exchange.
Return Shipping Costs
Customers are responsible for return shipping costs unless the return is due to our error or a defective product. We recommend using a trackable shipping service to ensure your return reaches us safely.
Non-Returnable Items
The following items cannot be returned:
-
Digital products (e-books or downloadable content)
-
Personalized or customized items
-
Gift cards
Accepted Payment Methods
Zetlly accepts the following secure and widely trusted payment options:
-
PayPal: Easily pay through your PayPal account, benefiting from secure transactions and buyer protection.
-
Stripe: Pay securely using major credit and debit cards including Visa, MasterCard, American Express, and Discover via Stripe’s encrypted payment gateway.
Payment Security
At Zetlly, your security is our utmost priority. We utilize advanced encryption technologies and robust security protocols provided by PayPal and Stripe. All payment information entered on our site is encrypted using Secure Socket Layer (SSL) technology, ensuring your financial information remains private and secure throughout the transaction process.
Zetlly does not store any credit card or sensitive financial information directly on our servers, further enhancing the security and protection of your personal data.
Payment Process and Confirmation
Upon placing an order, your chosen payment method (PayPal or Stripe) will immediately process the transaction. You will receive an automated confirmation email shortly after your payment has been successfully completed, detailing your transaction and order summary.
Please retain this confirmation email for your records and reference in case of any inquiries or disputes.
Learn how to apply modern AI to create powerful cybersecurity solutions for malware, pentesting, social engineering, data privacy, and intrusion detection Key Features Manage data of varying complexity to protect your system using the Python ecosystem Apply ML to pentesting, malware, data privacy, intrusion detection system(IDS) and social engineering Automate your daily workflow by addressing various security challenges using the recipes covered in the book Book Description Organizations today face a major threat in terms of cybersecurity, from malicious URLs to credential reuse, and having robust security systems can make all the difference. With this book, you’ll learn how to use Python libraries such as Tensor Flow and scikit-learn to implement the latest artificial intelligence (AI) techniques and handle challenges faced by cybersecurity researchers. You’ll begin by exploring various machine learning (ML) techniques and tips for setting up a secure lab environment. Next, you’ll implement key ML algorithms such as clustering, gradient boosting, random forest, and XGBoost. The book will guide you through constructing classifiers and features for malware, which you’ll train and test on real samples. As you progress, you’ll build self-learning, reliant systems to handle cybersecurity tasks such as identifying malicious URLs, spam email detection, intrusion detection, network protection, and tracking user and process behavior. Later, you’ll apply generative adversarial networks (GANs) and autoencoders to advanced security tasks. Finally, you’ll delve into secure and private AI to protect the privacy rights of consumers using your ML models. By the end of this book, you’ll have the skills you need to tackle real-world problems faced in the cybersecurity domain using a recipe-based approach. What you will learn Learn how to build malware classifiers to detect suspicious activities Apply ML to generate custom malware to pentest your security Use ML algorithms with complex datasets to implement cybersecurity concepts Create neural networks to identify fake videos and images Secure your organization from one of the most popular threats – insider threats Defend against zero-day threats by constructing an anomaly detection system Detect web vulnerabilities effectively by combining Metasploit and ML Understand how to train a model without exposing the training data Who this book is for This book is for cybersecurity professionals and security researchers who are looking to implement the latest machine learning techniques to boost computer security, and gain insights into securing an organization using red and blue team ML. This recipe-based book will also be useful for data scientists and machine learning developers who want to experiment with smart techniques in the cybersecurity domain. Working knowledge of Python programming and familiarity with cybersecurity fundamentals will help you get the most out of this book.Machine Learning for Cybersecurity Cookbook: Over 80 recipes on how to implement machine learning algorithms for building security systems using Python 1st Edition is written by Emmanuel Tsukerman and published by Packt Publishing. ISBNs for Machine Learning for Cybersecurity Cookbook are 9781838556341, 1838556346 and the print ISBNs are 9781789614671, 1789614678.
Related products
New Book